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Stability of Plane Liquid Sheets in Compressible Gas Streams
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A linear stability analysis has been carried out for viscous incompressible liquid sheets in two compressible
gas streams of unequal velocities. It is found that there exist two independent unstable modes: parasinuous and
paravaricose. Although both modes are unstable, the parasinuous mode is predominant under the conditions
typically found for practical applicationsof liquid atomization and sprays. Gas compressibility increases the wave
growth rate and dominant wave number for both of the unstable modes; hence, it can enhance signi� cantly the
breakup of liquid sheets and the production of small droplets in sprays.

Nomenclature
a = half-thicknessof the liquid sheet
C = velocity of sound for the gas phase
d j = gas-to-liquiddensity ratio, ¯q j / ¯q `

i =
p

¡ 1
k = wave number
M j = Mach number of the ambient gas with respect to a

frame of reference moving with the liquid sheet
at a velocity U ¤

` , U ¤
` / C j

m = ka
p = pressure perturbation
Re = liquid Reynolds number, U ¤

`a / m `

r j = d j[1 + ( X + imU j )2 M2
j / m2] ¡ 1/2

S = [m2 + Re( X + im)]1/ 2

t = time
U j = dimensionless gas stream velocity, U ¤

j / U ¤
`

U ¤
` = liquid sheet velocity

U ¤
1 , U ¤

2 = gas stream velocity
u = x component of the velocity perturbation
u = velocity perturbationvector
v = y component of the velocity perturbation
We = liquid Weber number, q `U ¤ 2

` a / r
x = spatial coordinate parallel to the liquid sheet and in the

direction of � ow
y = spatial coordinate normal to the liquid sheet
g = surface displacement from the unperturbed position

y = §a
g 0 = initial disturbance amplitude
l = dynamic viscosity
m = kinematic viscosity
q = density perturbation
¯q = density
r = surface tension
X = x a / U ¤

`
x = eigenfrequency

Subscripts

Im = imaginary part of a complex variable
j = ,̀ 1 or 2
` = liquid-phaseproperty
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Re = real part of a complex variable
1 or 2 = property associated with the upper or lower gas

stream, respectively
+ = upper gas– liquid interface
¡ = lower gas– liquid interface

Introduction

T HE instability and breakup of thin liquid sheets into small
droplets are of signi� cant fundamental and practical impor-

tance and have a variety of practical applications, such as spray
drying operations, chemical and pharmaceutical processing, and
power generation and propulsion systems.1,2 As a result, a num-
ber of studies have been carried out to investigate various aspects
of liquid sheet stability and breakup processes. A summary of the
early studies can be found in Ref. 3 as they relate to the application
of liquid atomization and sprays. Squire4 and Hagerty and Shea5

conducteda stability analysis of a thin liquid sheet with both liquid
and gas phases being taken as inviscid and incompressible.Hagerty
and Shea5 showed that there can only exist two modes of unstable
waves on the two gas– liquid interfaces for liquid sheets in a station-
ary gas medium, correspondingto the two surface waves oscillating
exactly in and out of phase, commonly referred to as the sinuous
and varicose modes. They also performed the � rst experimental
measurements of the wave growth and wavelength for liquid sheets
under various � ow conditions,and the theoreticalpredicitionswere
compared favorably with their experimental results. The effect of
liquid viscosity was investigated by Li and Tankin.6 It was shown
that although aerodynamic instability dominates and viscous effect
reduces the wave growth rate for the sinuous mode at large Weber
numbers and for the varicose mode at any Weber numbers, liq-
uid viscosity can enhance the liquid sheet instabilityfor the sinuous
mode at low Weber numbers, and under this conditionthe viscosity-
enhanced instabilitycan even become predominant.Li7 also carried
out a studyon the stabilityof viscous liquid sheetsin two gas streams
of unequal velocities. It was found that two independent unstable
modes, named parasinuousand paravaricose,exist for this case, and
that thesemodes resemble,but certainlydiffer from, the well-known
sinuous and varicose modes found by Hagerty and Shea5 for liquid
sheets in a stationarygas medium. It was also shown that the relative
velocities between the liquid and gas streams control the paravari-
cose mode and the parasinuous mode at large Weber numbers and
that the absolute velocities of the liquid and gas streams dominate
the parasinuous mode at small Weber numbers.

All of these previous studies have considered the liquid sheet in-
stability as a result of temporally growing disturbances.Lin et al.8

investigated the absolute and convective (spatial) instability of a
liquid sheet. The spatial instability of plane liquid sheets was also
studiedby Li.9 He showed that, for the practical importanceof large
Weber numbers for the applicationof liquidatomizationand sprays,
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the spatial instability is related to the temporal instability according
to Gaster’s transformation.10 The various results concerning the ab-
solute and spatial instability of plane liquid sheets have also been
reviewed by Li.11

In all of the aforementioned theoretical studies, both liquid and
gas phases have been assumed incompressible.However, it is well
known that in practice the compressibility effect may not be ne-
glected, such as in twin-� uid, for example, air assist and airblast,
atomization, where the relative velocity between the gas and liq-
uid sheet could reach as high as close to the sonic velocity of the
gas, and in scramjet combustors, where liquid fuel jets are injected
transverselyinto a supersonic� ow of gas. Twin-� uid atomization is
extensivelyused in many industrialprocesses, including fuel prepa-
ration in jet engines2 and spray drying processes.1 Hence, a theo-
retical study of the compressibilityeffect on liquid sheet instability
becomes necessary.Li and Kelly12 analyzedthe stabilityof an invis-
cid incompressibleliquid sheet and circular liquid jet in a co� owing
compressiblegas stream, and the effect of compressibilityon circu-
lar liquid jet instabilityhas also been studied for two- (Refs. 13–15)
and three-dimensional disturbances.16 However, the general case
of the instability of viscous liquid sheets in two compressible gas
streams of unequal velocities has not been investigated, and this is
the subject of the present study.

Experimental observations of the liquid sheet disintegration in
high-velocity co� owing gas streams17,18 clearly indicate the ex-
istence of the two-dimensional unstable waves, especially in the
early stage of the sheet breakup process. Theoretically, Squire’s
theorem (see Ref. 19) is applicable for the present case of linear
stability of two-dimensional liquid sheets, so that for any unsta-
ble three-dimensional disturbances there exists an equivalent two-
dimensional disturbance that is more unstable. Because the present
study is interested in the instability and breakup of liquid sheets,
only two-dimensional disturbances will be considered. The linear
stability analysis will be presented next, leading to the dispersion
relation governing the characteristicsof the liquid sheet instability.
Then the results will be given, followed by the conclusions drawn
from the present investigation.

Stability Analysis
Consider a two-dimensionalviscous liquid sheet with a thickness

of 2a, a velocity U ¤
` , and density ¯q ` discharged into two compress-

ible gas streams of unequal velocities, as shown schematically in
Fig. 1. The gas stream on one side of the liquid sheet has a veloc-
ity U ¤

1 and density ¯q 1 and on the other side has a velocity U ¤
2 and

density ¯q 2 . Because of its inherent nature, the liquid sheet with the
aforementioned � ow� eld is unstable subject to even small distur-
bances. Assume u j = (u j , v j ) = u j (x , y, t ), p j = p j (x, y, t), and
q j = q j (x , y, t) are the velocity,pressure,and densityperturbations,
respectively, induced by a disturbance.Then the equations govern-
ing these perturbation quantities are the conservation of mass and
momentum, which can be written, on linearization,as follows:

@

@t
+ U ¤

j

@

@x
q j = ¡ ¯q j r ¢ u j (1)

Fig. 1 Schematic of a plane liquid sheet.

@

@t
+ U ¤

j

@

@x
u j = ¡

1

¯q j
r p j + m j r 2u j (2)

where the subscript j =` represents the quantities related to the
liquidphase,and j = 1 or 2 to thegas phaseon each sideof the liquid
sheet.Here it is assumed that the gravity is negligible,that the liquid
phase is incompressible( ¯q ` = 0), and that the gas phase is inviscid,
that is, that the gas kinematic viscosity m 1 = m 2 =0. The effect of
gravity has been neglected because the Froude number involved is
typically very large for practical applications of liquid atomization
and sprays. The liquid-phasecompressibilityeffect has been shown
to be negligible for cylindrical liquid jets13,14 and is expected to
be the same for the present problem. The neglect of gas viscosity
is based on the observation that the viscosity of the surrounding
gas medium is only weakly stabilizing and does not in� uence the
relevant phenomenon appreciably, as Lin and Ibrahim20 found in
a related work. It has also been shown21 that the shear waves at
the liquid–gas interface due to the growth of boundary layers play
a secondary role in the jet breakup process (the effect is orders of
magnitude smaller than those considered herein).

Because the gas phase is compressible, one more equation is
needed to specify the gas motion, which is the equation of state:

@p j

@q j s

= C2
j ( j = 1, 2) (3)

where the subscript s represents an isentropic condition and C j is
the velocity of sound in the gas medium.

The � ow� eld solutionsto the precedinggoverningequationsmust
satisfy the following kinematic and dynamic boundary conditions
at the two liquid–gas interfaces, y ¼ §a + g § ,

v j =
@

@t
+ U ¤

j

@

@x
g § ( j = ,̀ 1, and 2) (4)

l `

@u`

@y
+

@v`

@x
= 0 (5)

p` ¡ p j ¡ 2 l `

@v`

@y
§ r

@2 g §

@x2
= 0 ( j = 1 and 2) (6)

where l ` is the dynamic viscosity of the liquid, r is the surface
tension, g + and g ¡ are the interfacial displacements from the un-
perturbed position y = +a and ¡ a, respectively, and the plus sign
before the surface tension r is associatedwith the interface y = +a
and the minus sign with y = ¡ a.

Solutions representingunstable wave motion are sought in terms
of the following normal mode:

(u j , p j , q j , g + , g ¡ )

= [ũ j (y), p̃ j (y), ˜q j (y), g 0, + , g 0, ¡ ]exp( x t + ikx) (7)

Then the bounded solution for the disturbance-induced� ow� eld is
obtained by the substitution of the preceding equation into the gov-
erning equations [Eqs. (1–3)] with a set of integration constants,
which can be determined by the boundary conditions [Eqs. (4–6)].
Finally, the requirement of nontrivial solution results in the follow-
ing dispersion relation governing the characteristicsof the unstable
wave motion and the ratio of initial disturbanceamplitudeat the two
gas–liquid interfaces:

Lv Ls + 1
2

r1( X + imU1)2 ¡ r2( X + imU2)2 (Lv + L s) = 0 (8)

g 0, ¡ / g 0, + = (L v ¡ L s) / (L v + L s) (9)

where
L s = [( X + im) + 2m2 / Re]2 tanh(m) ¡ (4m3 / Re2)S tanh(S)

+ r2( X + imU2)
2 + m3 / We (10)

L v = [( X + im) + 2m2 /Re]2 coth(m) ¡ (4m3 /Re2)S coth(S)

+ r2( X + imU2)
2 + m3 / We (11)
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and the other dimensionlessparameters are as follows: X , the com-
plex eigenfrequency;m , the disturbance wave number; Re; We; U j ;
and d j . This choice for the Mach number is based on experimen-
tal observations22,23 that waves form on the liquid–gas interfaces
and then propagate from the wavy liquid sheet surfaces into the
compressible gas stream.

Comparisonof the present results [Eqs. (8) and (9)] with those of
the liquid sheet in incompressible gas stream of Li7 indicates that
the gas-phase compressibility effect enters the dispersion relation
through the gas-phase pressure � uctuations via the normal stress
boundary condition. That is, the effect of gas stream compressibil-
ity effectivelymodi� es the gas-to-liquiddensity ratios according to
the expressionr j given earlier.Further analysis and numerical com-
putation show that the denominater in the r j expression is smaller
thanone, thus thegas-phasecompressibilityessentiallyincreasesthe
gas-to-liquiddensity ratio d j . Because it is generally known that in-
creasingthedensityratiod j enhancesthedegreeof sheet instability,7

gas compressibility will promote the instability and breakup of the
liquid sheets. It is also evident that the present results for the dis-
persion relation [Eq. (8)] and the initial disturbanceamplitude ratio
[Eq. (9)] reduce to those of the incompressiblecase investigatedby
Li7 when the Mach number M j vanishes.

From Eqs. (8) and (9), it becomes clear that when ¯q 1 = ¯q 2 and
U1 =U2 , we have either Ls =0 and g 0, ¡ / g 0, + = +1 or L v =0 and
g 0, ¡ / g 0, + = ¡ 1.The formercorrespondsto the two interfacialwaves
having a zero phase angle difference h as shown in Fig. 1, which
is often called sinuous mode of disturbances, and the latter corre-
sponds to the two interfaces being displaced out of phase, which is
usually referred to as the varicose mode. In general, the two inter-
faces will be displaced neither exactly in phase nor out of phase;
however, one of the two unstable solutions closely resembles the
sinuous mode. Hence, it will be called the parasinuous mode and
the other solution the paravaricosemode. Note that only r2 appears
in Eqs. (10) and (11) becauseL s =0 and L v =0 wouldbe the disper-
sion relation for the sinuous and varicose mode, respectively, if the
� ow conditions for the two gas streams are the same, that is, d1 =d2

and U1 =U2, hence, r1 =r2. The different conditions in the two gas
streams are re� ected in the square bracket term in the dispersion
relation [Eq. (8)].

To investigatethe effect of gas compressibilityon the liquid sheet
instability,we will seek solutions to the dispersionrelation[Eq. (8)]
under various � ow conditions. Because the spatial instability of
plane liquid sheets is related to the temporal instability9 through
Gaster’s transformation,10 only temporal instability will be pre-
sented in this study. In the context of temporal analysis, the real
part of the complex eigenfrequency X = X Re + i X Im is often called
the growth rate, which represents the degree of the liquid sheet
instability.Because the dispersion relation cannot be solved analyt-
ically in closed forms, a numericalprocedurehas been implemented
through the use of Muller’s method.24 Numerical iteration is termi-
nated when the relative error between the successive iterations for
the eigenvalue X satis� es a preset tolerance, which is usually 10 ¡ 4

or less in the present study.

Results and Discussion
Before we present the results concerningthe characteristicsof the

instability,it will be useful to analyze the cutoffwave number for the
two unstablemodes. The cutoff wave number is the maximum wave
number of unstable disturbances, and, hence, it can be determined
by setting the real part of the eigenfrequency X Re to zero in the
dispersion relation [Eq. (8)]. After some algebraic manipulations, it
is found that there exist two cutoff wave numbers given here:

m0,1 =
d1We(1 ¡ U1)2

1 ¡ M 2
1 (1 ¡ U1)2

1
2

(12)

m0,2 =
d2We(1 ¡ U2)2

1 ¡ M 2
2 (1 ¡ U2)2

1
2

(13)

Clearly, the range of the unstable wave numbers depends on the
Weber number, gas-to-liquid density ratio, gas velocity, and gas

compressibility,but is independentof the liquid viscous effect. Vis-
cositycertainlyaffectsthedisturbancegrowthrateand themaximum
mode of instability, but it does not change the cutoff wave number.
This result is consistentwith earlier studies.6,7

Also note that the cutoff wave number given in Eq. (12) is clearly
related to the upper gas– liquid interface, is in� uenced by the � ow
conditions across that interface, and is completely independent of
the � ow conditionsof the other gas stream, that is, the lowerone, that
is not adjacent to that interface.Similar behavior is observedfor the
other cutoff wave number shown in Eq. (13). However, numerical
computation indicates that the growth rate is dependent on the � ow
conditions of not only the liquid sheet, but also of both of the gas
streams. Furthermore, the parasinuous mode is always associated
with the larger of the two cutoff wave numbers and the paravaricose
mode with the smaller cutoff wave number. Therefore, the cutoff
wave number is equal to max(m0,1, m0,2) for the parasinuousmode
and min(m0,1, m0,2) for theparavaricosemode.Physically,it implies
that the parasinuousmode is related to the larger of the two relative
velocities between the liquid and gas streams and the paravaricose
mode to the smaller relative velocity. Hence, the growth rate for
the parasinuous mode is usually larger than its counterpart for the
paravaricosemode, and the former typically is dominant in practice.
These observations are almost the same as for the incompressible
case studied by Li.7

Furthermore, Eqs. (12) and (13) can be expressed in terms of a
Weber number de� ned by q (̀U ¤

` ¡ U ¤
j )2a / r and a Mach number

de� ned by (U ¤
` ¡ U ¤

j ) / C j . Hence, it reveals that both cutoff wave
numbers depend on the relative velocities between the liquid and
gas streams and that they are independentof the absolute liquid and
gas velocities. However, as will be shown later, numerical calcula-
tions indicate that the growth rates are a function of the absolute
velocities for the parasinuousmode at small liquid Weber numbers,
of the relative velocities for the parasinuous mode at large Weber
numbers, and for the paravaricose mode at any Weber numbers.
These results are identical to the results of Li’s previous study.7

Figure 2 shows the effect of gas compressibility on the cutoff
wave number for the conditions of We =103 and d j = 10 ¡ 3 , where
j can be either 1 or 2. It is clear that the cutoff wave number m0, j

increases slowly with the Mach number until M j reaches a criti-
cal value. Then m0, j increases signi� cantly and approaches in� nity
at the critical Mach number M j = j 1/ (1 ¡ U j ) j , which corresponds
to the vanishingof the denominator in Eqs. (12) and (13). Therefore,
the gas compressibility effect will be felt with much smaller Mach
numbers at high gas velocitiesas comparedwith the cases at low gas
velocities. It should also be pointed out that Chawla25 has shown
that, for the unity Mach number, the cutoff wave number for the
instability of a gas– liquid interface is always in� nitely large for an

Fig. 2 Cutoff wave number as a function of the Mach number Mj and
the dimensionless gas velocity Uj; We = 103 and dj = 10¡ 3 ( j can be
either 1 or 2).
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interfaceseparatingamovinggasanda stationaryliquidstream.This
corresponds to a unity dimensionlessrelative velocity across the in-
terface when normalized by the moving stream velocity; thus, the
criticalMach number reduces to one accordingto the present result.

Figure 3 presents the dimensionless wave growth rate X Re as a
function of the wave number for both parasinuousand paravaricose
modesof disturbancesfor the � ow conditionsofWe = 103, Re =103,
d1 =d2 =10 ¡ 3, U2 = 0, and U1 =2. It is seen that the growth rate
and dominant and cutoff wave numbers all increase signi� cantly
with the Mach number, which indicates that the gas compressibil-
ity enhances the liquid sheet instability and promotes the liquid
sheet breakup processes. It is also clear that the growth rate for the
parasinuous mode is much larger than that for the corresponding
paravaricose mode under the same � ow conditions. This suggests
that the parasinuousmode of disturbancesis more unstable and will
predominate the liquid sheet breakupprocesses.Hence, it is the one
observed in reality. This is because the parasinuousmode is always
associatedwith the larger relativevelocitiesbetween the liquid sheet
and the gas stream, as discussed earlier. The results shown in Fig. 3
are representativeof large Weber numbers.

Results typical for small Weber numbers are shown in Fig. 4,
where the growth rates for the parasinuous mode are computed for
the � ow conditions of We = 3, Re =102, d1 =d2 =0.1, U2 = 0, and
U1 =1. Clearly, the growth rate curvesare quite differentfrom those
at large Weber numbers. Speci� cally, the growth rate curves exhibit
two localmaxima.The � rst peakat the smallerwave numbers,which
hasbeen referredto as the aerodynamicinstabilityby Li and Tankin6

Fig. 3 Dimensionless wave growth rate for parasinuous and paravari-
cose modes; We = 103 , Re = 103 , d1 = d2 = 10 ¡ 3, U2 = 0, U1 = 2, and M
(= M1 = M2) as shown.

Fig. 4 Dimensionless wave growth rate for parasinuousmode; We = 3,
Re = 102, d1 = d2 = 0.1, U2 = 0, U1 = 1, and M (= M1 = M2 ) as shown.

for the case of M =0, increasesonly slightlywith the Mach number,
whereas the second peak at relatively large wave numbers, which
has been calledviscosity-enhancedinstabilityby Li and Tankin,6 in-
creases signi� cantlywith the Mach number alongwith considerable
increasesin the dominantand cutoffwavenumbers.Again, this indi-
cates the destabilizingeffect of gas compressibilityon liquid sheets.

The formation of two-peak growth rate curves is shown in Fig. 5
as a function of the gas velocity U1 for the conditions of We =3,
Re =10, d1 =d2 = 0.1, U2 = 0, and M1 = M2 =0. The zero values
of the Mach numbers here represent the case of incompressiblegas
streams. Under these conditions, the growth rate only has one local
maximum, corresponding to the aerodynamic instability described
by Li and Tankin,6 when the gas velocity U1 =0. As the gas ve-
locity U1 is increased gradually, the � rst peak decreases, and the
second peak increases. The � rst peak becomes the smallest, and
even smaller than the second peak, at U1 =0.6. As the gas velocity
is increased further, both peaks increase. However, the � rst peak
increasesmuch faster than the second one, such that at U1 =1.4 the
� rst peak dominates completely and the second peak disappears.
It is evident that the second peak, whose presence is due to liquid
viscosity,6 can be promoted or suppressedby suitable values of gas
velocities. Figure 5 also reveals that the growth rate values are dif-
ferent at the same relative velocity but different absolute velocities,
for example, compare the growth rate at U1 =0.6, and 1.4 and 0 and
2. This demonstrates that the liquid sheet instability and breakup
are controlled by the absolute, rather than relative, velocities at low
Weber numbers. This result contrasts sharply with the case of large
Weber numbers where the relative velocities are always predomi-
nant in in� uencing the instability characteristics.7 Figure 6 shows
the three-dimensionalview of the two-peak formation in the growth

Fig. 5 Formationof two-peak wavegrowthrate for parasinuousmode;
We = 3, Re = 10, d1 = d2 = 0.1, U2 = 0, M1 = M2 = 0, and U1 as shown.

Fig. 6 Three-dimensional view of the two-peak formation in the
growth rate of parasinuous mode; We = 3, Re = 10, d1 = d2 = 0.1, U2 = 0,
and M1 = M2 = 0.
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rate curves. It is clear that a local minimum occurs at the wave
number of around 0.1 and the gas velocity U1 of around 0.5.

In practice, liquid sheet breakup is usually considered to be dic-
tated by the maximum wave growth rate under a given set of � ow
conditions, and breakup occurs at the corresponding wave num-
ber, called the dominant wave number, which determines the sizes
of subsequently formed droplets. Figures 7 and 8 show the vari-
ation of the maximum wave growth rate and the dominant wave
number, respectively, for various Weber numbers as a function of
the Mach number M (= M1 = M2 ) for both parasinuous and par-
avaricose modes under the conditions of Re =105, d1 =d2 =10 ¡ 3,
U2 =0, and U1 = 2, where the solid curves represent the results for
the paravaricosemode and dashed curves the parasinuous mode. It
is seen that both the maximum growth rate and the dominant wave
number increase with both Weber and Mach numbers, and the in-
crease becomes more pronounced and considerable at large values
of Weber number and Mach number. Hence, liquid sheet atomiza-
tion will be enhanced by the gas compressibility effects. It is also
shown that the parasinuous mode has larger growth rate than the
corresponding paravaricose mode, signifying its dominance over
the liquid sheet instability processes, as discussed earlier. However,
the dominant wave number for the paravaricosemode is larger than
that for the parasinuous mode.

Fig. 7 Maximum wave growth rate as a function of the Mach number
M (= M1 = M2) for both parasinuous and paravaricose mode; Re = 105,
d1 = d2 = 10¡ 3, U2 = 0, U1 = 2, and We as shown: ——, paravaricose
mode, and – – – , parasinuous mode.

Fig. 8 Dominant wave number as a function of the Mach number M
(= M1 = M2 ) for both parasinuous and paravaricose mode; Re = 105,
d1 = d2 = 10¡ 3, U2 = 0, U1 = 2, and We as shown: ——, paravaricose
mode, and – – – , parasinuous mode.

Conclusions
This paper reports a linear stability analysis of viscous incom-

pressible liquid sheets in two compressible gas streams of unequal
velocities. The results show that there exist two independent un-
stable modes: parasinuous and paravaricose.Although both modes
are unstable, the parasinuousmode is predominantunder the condi-
tions typically found for practicalapplicationsof liquid atomization
and sprays. Gas compressibilityincreases the wave growth rate and
dominantwave number for both of the unstablemodes; hence, it can
enhancesigni� cantly thebreakupof liquidsheetsand the production
of small droplets in sprays.
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